Formulation of famous problems as SAT:
Bounded Model Checking (1/4)

Given a property p: (e.g. “always signal_a = signal_b”)

Is there a state reachable within & cycles, which satisfies —=p ?

P p)4 -p p
(@) 20) > Q @) o
So 8) Sk Sk

Formulation of famous problems as SAT:
Bounded Model Checking (2/4)

The reachable states in £ steps are captured by:

I(s9) A P(Sg S APCS] 82) A A PCS)_y 55)

The property p fails in one of the cycles 1..k:

'plv'p2v...v_‘pk

Formulation of famous problems as SAT:
Bounded Model Checking (3/4)

The safety property p is valid up to cycle k iff €2(k) is unsatisfiable:

k-1 k
Q(k): I, A /_\O O(S.,8.,.,) A _/O -p,

P p)4 -p p
(@) 20) > Q @) o
So 8) Sk Sk

Formulation of famous problems as SAT:
Bounded Model Checking (4/4)

Example: a two bit counter

y

Initial state: [: —=/A-r

11 _
We - © Transition: ©: [=(=7)
l T r'=-r
01e—>@ 10 Property: always (=/ v —r).
For k =2:

/\ro)vl

(p: (_IZOA_IFO)A%(ZO¢FO)AF1=—1}”O/\ /\}"1)V
2

=([, 21 AT, =T,
(ly=n)Ar, 1 AT)

For k =2, Q(k) is unsatisfiable. For k£ = 4 Q(k) is satisfiable

What is SAT?

Given a propositional formula in CNF, find an
assignment to Boolean variables that makes the
formula true:

W; = (X, V X3)

A ={x;=0,x,=1,x;=0, x,=1}

Why SAT?

* Fundamental problem from theoretical point of view

= Numerous applications:
— CAD, VLSI
— Optimization
— Bounded Model Checking and other type of formal verification
— A, planning, automated deduction

A Basic SAT algorithm

Given ¢ in CNF: (X’Yaz)a('xay)a('YaZ)’('X’-Y’-Z)

Decide()
YV e Deduce()
DI, Resolve_COHﬂict()
A Basic SAT algorithm

Choose the next
variable and value.
. Return False if all
While (TI“UZ) variables are assigned

{

if (IDecide()) return (SAT);
while (IDeduce())
if (IResolve_Conflict()) return (UNSAT);
} S
Backtrack until

no conflict.
Return False if impossible

Apply unit clause rule.
Return False if reached
a conflict

