
Software safety - DEF-STAN 00-55

• “Where safety is dependent on the safety related
software (SRS) fully meeting its requirements,
demonstrating safety is equivalent to
demonstrating correctness with respect to the
Software Requirement”.

Ultimate problems addressable by model
checking

• Checking correctness of the code running on the application
- Two main approaches:
– Code Model Checking (Software Model Checking)
– Model Based Development

• Checking safety of the system (the system never runs into
an unsafe state)
– Concentrating on safety properties on a Model of the system
– Opening to probabilistic safety

Software Model Checking
• Although the early papers on model checking

focused on software, not many applications to prove
the correctness of code, until 1997

• Until 1997 most work was on software designs
– Finding bugs early is more cost-effective
– Reality is that people write code first, rather than design

• Only later the harder problem of analyzing actual
source code was first attempted

• Pioneering work at NASA

Software Model Checking

• Bringing programs to model checking
– Translation to a standard Model Checker

• Bringing model checking to programs
– Ad hoc model checkers that directly deal with programs as

input

• In both cases, need of Abstraction.

Most model checkers cannot directly deal with the
features of modern programming languages

Abstraction

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program Model Checker
Input

Possibly infinite state Finite state

© Willem Visser 2002

Abstraction
• Model checkers don’t take real programs as input
• Model checkers typically work on finite state systems
• Abstraction cuts the state space size to something

manageable
• Abstraction eliminates details irrelevant to the property
• Disadvantage: Loss of Precision: False positives/negatives

• Abstraction comes in three flavors
– Over-approximations, i.e. more behaviors are added to the

abstracted system than are present in the original
– Under-approximations, i.e. less behaviors are present in the

abstracted system than are present in the original
– Precise abstractions, i.e. the same behaviors are present in the

abstracted and original program

Under-Approximation
“Meat-Axe” Abstraction

• Remove parts of the program considered “irrelevant” for the
property being checked, e.g.
– Limit input values to 0..10 rather than all integer values
– Queue size 3 instead of unbounded, etc.

• The abstraction of choice in the early applications of
software model checking

• Used during the translation of code to a model checker’s
input language

• Typically manual, no guarantee that only the irrelevant
behaviors are removed.

Property-directed Slicing

• slicing criterion generated automatically from observables mentioned in the property
• backwards slicing automatically finds all components that might influence the observables.

Source program Resulting slice

Slice

mentioned
in property

indirectly
relevant

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated under-approximation that

will lead to a precise abstraction w.r.t. the property being checked

© Willem Visser 2002

Over-Approximations
Abstract Interpretation

• Maps sets of states in the concrete program to
one state in the abstract program
– Reduces the number of states, but increases the number

of possible transitions, and hence the number of
behaviors

– Can in rare cases lead to a precise abstraction
• Type-based abstractions (-->)
• Predicate abstraction (-->)
• Automated (conservative) abstraction
• Problem: Eliminating spurious errors

– Abstract program has more behaviors, therefore when an
error is found in the abstract program, is that also an
error in the original program?

Data Type Abstraction

int x = 0;
…
if (x == 0)
 x = x + 1;

Abstract Interpretation

NEG if x<0
h(x) = ZERO if x =0

POS if x>0

Code

Sign x = ZERO;
…
if (Sign.eq(x,ZERO))
 x = Sign.add(x,POS);

Abstraction homomorphism h: int --> Sign

Replace int by Sign abstraction {neg,pos,zero}

h

Predicate Abstraction

x ! y

Abstract

Concrete x = y

F T

" : int # int bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ $ (x = y) EQ $ (x = y)

• Mapping of a concrete system to an abstract system, whose states
 correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking

© Willem Visser 2002

Replace predicates in the program by boolean variables, and replace each
instruction that modifies the predicate with a corresponding instruction
that modifies the boolean.

How do we Abstract Behaviors?

• Abstract domain A
– Abstract concrete values to those in A

• Then compute transitions in the abstract
domain
– Over-approximations: Add extra behaviors
– Under-approximations: Remove actual behaviors

Underlying model: Kripke Structures

• M = (S,s0,%>,L) on AP
! S: Set of States
! s0: Initial State
! ->: Transition Relation
! L: S -> 2AP, Labeling on States

Simulations on Kripke Structures
M = (S, s0, ->, L)
M’ = (S’, s’0, ->’, L’)
Definition: R & S # S’ is a simulation relation
between M and M’ iff

M’ simulates M (M ~ M’) iff (s0, t0) ' R

Intuitively, every transition in M can be matched by some
transition in M’

(s,s’) ' R implies

1. L(s) = L’(s’)

2. for all t s.t. s (t ,
 exists t’ s.t. s’ (’ t’ and

(t,t’) ' R.

Preservation of properties by the
Abstraction

• M concrete model, M’ abstract model

• Strong Preservation:
– M’ |= P iff M |= P

• Weak Preservation:
– M’ |= P => M |= P

• Simulation preserves ACTL* properties
– If M ~ M’ then M’ |= AG p => M |= AG p

Abstraction Homomorphisms
• Concrete States S, Abstract states S’
• Abstraction function (Homomorphism)

– h: S -> S’
– Induces a partition on S equal to size of S’

• Existential Abstraction - Over-Approximation
– Make a transition from an abstract state if at least one

corresponding concrete state has the transition.
– Abstract model M’ simulates concrete model M

• Universal Abstraction - Under-Approximation
– Make a transition from an abstract state if all the

corresponding concrete states have the transition.

Existential Abstraction -
Preservation

Preservation Theorem

M’ |=) (M |=)

 M’ |=) : counterexample may be spurious

 NOTE: ACTL* is the universal fragment of CTL*

 Converse does not hold
M’ |=) (M |=)

 Let) be a Universally quantified formula (es, an ACTL*
property)

 M’ existentially abstracts M, so M ~ M’

Universal Abstraction -
Preservation

M’ |=) (M |=)

 Converse does not hold
M |= f (M’ |= f

 Let) be a existential-quantified property (i.e., expressed in
ECTL*) and M simulates M’

 Preservation Theorem

NOTE: ECTL* is the universal fragment of CTL*

Model Checking (safety)

I

= unsafe state AG ~ unsafe (true property)

Abstraction:

I

Under-Approximation

AG ~ unsafe true (but it is not preserved)

Abstraction:

I

Over-Approximation

AG ~ unsafe false counterexamplespurious

 It is not a path in the
concrete system

Refinement of the abstraction :

I

AG ~ unsafe true
Separate states that are the reason of
the spurious counterexample

Automated Abstraction/Refinement

• Counterexample-Guided AR (CEGAR)
– Build an abstract model M’
– Model check property P, M’ |= P?
– If M’ |= P, then M |= P by Preservation

Theorem
– Otherwise, check if Counterexample (CE)

is spurious
– Refine abstract state space using CE

analysis results
– Repeat

M’:= abstract(M)

M’:= refine(M’)

M’ |= P

spurious(CE)

F

F

T

T No Bug

Bug

Hand-Translation
 Early applications at NASA

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund
– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS – Penix, Visser, et al. 1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment generation)
– Limited abstraction - programmers produced sliced system
– 3 man months

© Willem Visser 2002

Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate them

to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
– http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and only local

changes

© Willem Visser 2002

Fully Automatic Translation
• Advantage

– No human intervention required
• Disadvantage

– Limited by capabilities of target system
• Examples

– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html
• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin

© Willem Visser 2002

Bringing Model Checking to Programs

• Allow model checkers to take programming languages as
input, (or notations of similar expressive power)

• Major problem: how to encode the state of the system
efficiently

• Alternatively state-less model checking
– No state encoding or storing
– On the fly model checking

• Almost exclusively explicit-state model checking
• Abstraction can still be used as well

– Source to source abstractions

Custom-made Model Checkers
• Translation based

– dSpin
• Spin extended with dynamic constructs
• Essentially a C model checker
• Source-2-source abstractions can be supported
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– SPIN Version 4
• PROMELA language augmented with C code
• Table-driven abstractions

– Bandera
• Translated Bandera Intermediate Language (BIR) to a

number of back-end model checkers, but, a new BIR custom-
made model checker is under development

• Supports source-2-source abstractions as well as property-
specific slicing

• http://www.cis.ksu.edu/santos/bandera/

Custom-made Model Checkers

• Abstraction based
– SLAM

• C programs are abstracted via predicate abstraction to
boolean programs for model checking

• http://research.microsoft.com/slam/
– BLAST

• Similar basic idea to SLAM, but using lazy abstraction, i.e.
during abstraction refinement don’t abstract the whole
program only certain parts

• http://www-cad.eecs.berkeley.edu/~tah/blast/
– 3-Valued Model Checker (3VMC) extension of TVLA for

Java programs
• http://www.cs.tau.ac.il/~yahave/3vmc.htm
• http://www.math.tau.ac.il/~rumster/TVLA/

© Willem Visser 2002

Java PathFinder (JPF)
void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0: iconst_0
1: istore_2
2: goto #39
5: getstatic
8: aload_0
9: iload_2
10: aaload

Bytecode

Special
JVM

Model
Checker

© Willem Visser 2002

Bandera & JPF
Architecture

BIRC BIR

Simulator

Abstraction
Engine

Slicer

Analyses
Translators

SPIN

dSPIN

SMV

Property Tool

Java
Jimple (BC)

Parser

Error Trace Display JPF
 Decompile ; javac

© Willem Visser 2002

One Case Study at NASA: DS-1
Remote Agent

• Several person-months to create verification model.
• One person-week to run verification studies.

TasksTasks

Properties Monitor

PropertyProperty
LocksLocks

DataData
basebase

Spacecraft
Commands

Achieve
Property

Change
Event

Lock
Event

Interrupt

Sensors

Subscribe

© Willem Visser 2002

One Case Study at NASA: DS-1
Remote Agent

• Five difficult to find concurrency errors detected
• “[Model Checking] has had a substantial impact, helping the RA team

improve the quality of the Executive well beyond what would otherwise
have been produced.” - RA team

• During flight RA deadlocked (in code we didn’t analyze)
– Found this deadlock with JPF

wait

Unexpected timing
of change event

check

DB change?

yes no

Monitor Logic

© Willem Visser 2002

Model Based Development

• Pioneering work at NASA has concentrated
on Software Model Checking, that is, work
on software as it is, maybe provided by a
third party.

• In a large part of the safety-critical
systems industry, the Model Based Design
approach has emerged as the main
paradigm for the development of software.

Test Suite

Modelization Phase

Model - Based
Development

Manual coding

Natural Language

Formalized

 Software Requirements
Document

Architectural Design
Document

Detailed Design
Document

Source code

Architectural Design

Detailed Design

Coding

Functional
 test

Integration Test

Unit Test

(Finite State) Model

Test Case
Definition

Test Suite

Properties
(formal expr. of
Requirements)

Modelization Phase

Model - Based
Development

Manual coding

Natural Language

Formalized

Software Requirements
Document

Architectural Design
Document

Detailed Design
Document

Source code

Architectural Design

Detailed Design

Coding

Functional
 test

Integration Test

Unit Test

(Finite State) Model

Formalization
Phase

Formal
Verification

Test Case
Generation

Model
Checking

Test Suite

Modelization Phase

Model - Based
Development

Automatic coding

Natural Language

Formalized

Software Requirements
Document

Source code

Code
Generation Functional

 test

(Finite State) Model

Test Case
Definition

Test Suite

Properties
(formal expr. of
Requirements)

Modelization Phase

Model - Based
Development

Automatic coding

Natural Language

Formalized

Software Requirements
Document

Source code

Code
Generation Functional

 test

(Finite State) Model

Formalization
Phase

Formal
Verification

Test Case
Generation

Model
Checking

GETS model
based

development
cycle

Verification by
Design Verifier

use of MC still limited:
model validation
conducted mostly by
simulation/testing

Credits

• Willem Visser. ASE 2002 Tutorial on Software Model
Checking

• Nishant Sinha. Lectures on Abstraction in Model Checking
(ppt), 15817, Mar 2005.

